• Morgen heb ik een wiskunde proefwerk, aangezien het weer proefwerkweek is. Nu loop ik echter tegen één ding op. IK heb een opdracht waarbij ik verticale en horizontale lijnstukken moet berekenen. Nou is dat niet het probleem, maar meer hoe ik de Asymptoten van de functies moet berekenen.

    Bij de volgende twee functies zouden er horizontale asymptoten uitkomen van 4 en -2, maar ik snap niet hoe (:
    f(x)=3^(x-1) -2
    g(x) = 4- 3^(x)

    ^ is tot de macht, en de getallen en de x tussen haakjes hoort bij die tot de macht. Staan ze erbuiten dan niet.

    Verticaal is een iets minder groot probleem, maar als iemand me dat goed uit kan leggen, héél erg graag (:

    Dit is trouwens 5vwo wiskunde B (Hoofdstuk Exponentiële en logaritmische functies)
    Alvast bedankt, jullie zouden me enorm helpen


    Miep

    Rowling schreef:
    En oh wacht, je kan het toch plotten? Heb je een grafische rekenmachine? Dan kan je toch gewoon intersect gebruiken?


    Intersect? Het is een asymptoot dat je moet berekenen. Intersect is toch het snijpunt van 2 functies berekenen?

    [ bericht aangepast op 11 dec 2013 - 18:32 ]


    Happiness can be found even in the darkest of times if one only remembers to turn on the light ~ Albus Dumbledore

    xTWIloverx schreef:
    (...)

    Intersect? Het is een asymptoot dat je moet berekenen. Intersect is toch het snijpunt van 2 functies berekenen?


    Klopt, maar dan weet je wat de X is op dat punt. Maar het kan ook zijn dat ik nu dingen in de war haal (wat waarschijnlijk zo is haha). Maar ik heb wiskunde A op havo dus waarschijnlijk heb ik het anders gehad.


    Alleen maar tranen van geluk

    Rowling schreef:
    (...)

    Klopt, maar dan weet je wat de X is op dat punt. Maar het kan ook zijn dat ik nu dingen in de war haal (wat waarschijnlijk zo is haha). Maar ik heb wiskunde A op havo dus waarschijnlijk heb ik het anders gehad.


    Nu snap ik het! Zo kan het inderdaad ook.


    Happiness can be found even in the darkest of times if one only remembers to turn on the light ~ Albus Dumbledore

    Rowling schreef:
    (...)

    Klopt, maar dan weet je wat de X is op dat punt. Maar het kan ook zijn dat ik nu dingen in de war haal (wat waarschijnlijk zo is haha). Maar ik heb wiskunde A op havo dus waarschijnlijk heb ik het anders gehad.

    Dat klopt niet, want een asymptoot is namelijk een lijn (horizontaal of verticaal), waar de functie niet bestaat. Dus je kunt geen x berekenen ^^
    Dan nadert hij het punt wel, maar zal het dus nooit geheel -2 worden, bijvoorbeeld. Het zal altijd -1,9999999999999999999999 zijn. ;P

    OT: ik zie al dat je je antwoord hebt, dus ^^


    Deep inside, I've never felt alive

    Haha, ik had dit een paar weken geleden op een toets en ik had een 1,1. (zit in 3VWO)
    Dusja, ik vind dit topic eigenlijk wel handig mits er iemand met een goede, duidelijke uitleg komt


    so if you care to find me, look to the western sky, as someone told me lately: everyone deserves a chance to fly

    xVixncxiex schreef:
    Haha, ik had dit een paar weken geleden op een toets en ik had een 1,1. (zit in 3VWO)
    Dusja, ik vind dit topic eigenlijk wel handig mits er iemand met een goede, duidelijke uitleg komt


    No way dat jij dit in 3 vwo had.


    i put the fun in funeral

    Belong schreef:
    Huh wait

    f(x)=3^(x-1) -2
    ^ Hor. as. is -2

    g(x) = 4- 3^(x)
    Hor. as is 4

    Dat is het toch gewoon? Het getal dat zeg maar los van de x staat? Dus in de formule h(x)= x(2^x) is de hor. as. 0, want er staat geen los getal bij, right?

    Also, verticale as moeten wij berekenen door met je grafische rekenmachine naar tabel te gaan, de formule invoeren en dan f(100) en f(1000) berekenen. Dan krijg je bijvoorbeeld 1.921 en 1.989 en dan weet je dus dat de verticale asymptoot 2 is.

    Sorry, ik ben geen wiskundig genie, dus geen geweldige uitleg x'D.

    True.
    Gelukkig heb ik overigens wiskunde B achter de rug. Wat een drama altijd. Het is echt een kwestie van oefenen, dat kan ik iedereen verzekeren.

    [ bericht aangepast op 12 dec 2013 - 12:09 ]


    Whatever you do in life will be insignificant, but it's very important that you do it because nobody else will.